Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Christopher Glidewell,^a* John N. Low,^b Janet M. S. Skakle^b and James L. Wardell^c

^aSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland, ^bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and ^cInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil

Correspondence e-mail: cg@st-andrews.ac.uk

Key indicators

Single-crystal X-ray study T = 120 KMean σ (C–C) = 0.003 Å R factor = 0.058 wR factor = 0.158 Data-to-parameter ratio = 17.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. In molecules of the title compound, $C_{22}H_{26}N_4O_4$, which lie across centres of inversion, the central octane fragment adopts a nearly planar all-*trans* conformation. There are no hydrogen bonds in the crystal structure but the molecules are linked into sheets by a single π - π stacking interaction.

Sheets of π -stacked centrosymmetric molecules in

N,N'-bis(3-nitrobenzylidene)octane-1,8-diamine

Comment

As part of our continuing studies of the supramolecular arrangements in imines, and especially in compounds of the type $O_2NC_6H_4CH=N-(R)-N=CHC_6H_4NO_2$, where R = 1,2-cyclo- C_6H_{10} (Glidewell, Low, Skakle & Wardell, 2005; Glidewell, Low & Wardell, 2005) or $R = (CH_2)_n$ (Bomfim *et al.*, 2005), we now report the molecular and supramolecular structure of the title compound, (I).

The molecules of (I) lie across centres of inversion in the space group $P2_1/c$, with the reference molecule selected as that lying across $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ (Fig. 1). The bond distances (Table 1) clearly show the presence of the double bond C11=N11, with typical skeletal bond angles at C11 and N11. The nitroaryl –CH=N-C fragment is almost planar, as is the eight-carbon fragment of the central spacer, as shown by the leading torsional angles (Table 1); however, the overall molecular conformation is very far from being planar, as shown by the torsion angles around the N11–C11 and C12–C13 bonds, where the non-H substituents are mutually anticlinal and synclinal respectively (Table 1 and Fig. 1).

The supramolecular aggregation is very simple; there are no hydrogen bonds of any kind, but a single aromatic π - π stacking interaction links the molecules into sheets. The aryl

Printed in Great Britain - all rights reserved

© 2005 International Union of Crystallography

Received 28 September 2005 Accepted 29 September 2005 Online 5 October 2005

Figure 1

The molecule of compound (I), showing the atom-labelling scheme. The atoms marked 'a' are at the symmetry position (1 - x, 1 - y, 1 - z) and displacement ellipsoids are drawn at the 30% probability level.

Figure 2

Stereoview of part of the crystal structure of compound (I), showing the formation of a π -stacked (100) sheet. For the sake of clarity, the H atoms have been omitted.

ring at (x, y, z), which is part of the molecule centred across $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$, is almost parallel with the aryl rings at $(x, \frac{1}{2} - y, \frac{1}{2} + z)$ and $(x, \frac{1}{2} - y, -\frac{1}{2} + z)$, which form parts of the molecules centred

across $(\frac{1}{2}, 0, 1)$ and $(\frac{1}{2}, 0, 0)$, respectively. The dihedral angle between adjacent rings is only 2.5 (2)°, with the ring-centroid separations both 3.762 (2) Å; the interplanar spacings are *ca* 3.39 Å and the ring-centroid offsets are *ca* 1.63 Å. Propagation of this single interaction by the space group symmetry then generates a (100) sheet in which each molecule is linked to four others (Fig. 2); there are, however, no direction-specific interactions between adjacent sheets.

Experimental

A solution of 3-nitrobenzaldehyde (0.4 mmol) and 1,8-diaminooctane (0.2 mmol) in methanol (20 ml) was heated under reflux for 1 h; the mixture was cooled and the solvent was removed under reduced pressure. The solid residue was recrystallized from 1,2-dichloroethane to yield crystals of compound (I) suitable for single-crystal X-ray diffraction (m.p. 359–361 K). IR (KBr): 3086, 2933–2832, 1646, 1610,1580, 1536, 1468, 1439, 1343, 1270, 1155, 1078, 1027, 971, 983, 931, 828, 805, 734, 684, 675, 629, 508 cm⁻¹.

Crystal data	
$C_{22}H_{26}N_4O_4$	$D_x = 1.301 \text{ Mg m}^{-3}$
$M_r = 410.47$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 2407
a = 8.1297 (5) Å	reflections
b = 19.2452 (15) Å	$\theta = 3.2 - 27.6^{\circ}$
c = 7.4113 (4) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 115.321 \ (4)^{\circ}$	T = 120 (2) K
V = 1048.15 (12) Å ³	Plate, yellow
<i>Z</i> = 2	$0.35 \times 0.24 \times 0.06 \text{ mm}$
Z = 2	$0.35 \times 0.24 \times 0.06 \text{ mm}$

Data collection

Bruker–Nonius KappaCCD diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2003) $T_{min} = 0.978$, $T_{max} = 0.995$ 11275 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.058$	H-atom parameters constrained $w = 1/[\sigma^2(F_{\alpha}^2) + (0.0804P)^2]$
$wR(F^2) = 0.158$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.01	$(\Delta/\sigma)_{\rm max} < 0.001$
2407 reflections	$\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-3}$
136 parameters	$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

C1-C11 C11-N11	1.476 (3) 1.268 (2)	N11-C12	1.455 (2)
C1-C11-N11	122.55 (18)	C11-N11-C12	117.28 (17)
C2-C1-C11-N11 C1-C11-N11-C12 C11-N11-C12-C13 N11-C12-C13-C14	-178.68 (19) -179.34 (18) 113.8 (2) -64.9 (2)	C12-C13-C14-C15 C13-C14-C15-C15 ⁱ C4-C5-N5-O51	-175.69 (16) 176.9 (2) -177.60 (19)

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

All H atoms were located in difference maps and then treated as riding atoms, with C–H distances of 0.95 (aromatic) or 0.99 Å (aliphatic), and with $U_{iso}(H) = 1.2U_{eq}(C)$.

2407 independent reflections

 $R_{\rm int} = 0.070$

 $\begin{array}{l} \theta_{\rm max} = 27.6^\circ \\ h = -10 \rightarrow 10 \end{array}$

 $k = -24 \rightarrow 24$ $l = -9 \rightarrow 9$

1284 reflections with $I > 2\sigma(I)$

Data collection: *COLLECT* (Hooft, 1999); cell refinement: *DENZO* (Otwinowski & Minor, 1997) and *COLLECT*; data reduction: *DENZO* and *COLLECT*; program(s) used to solve structure: *OSCAIL* (McArdle, 2003) and *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *OSCAIL* and *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97* and *PRPKAPPA* (Ferguson, 1999).

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England. The authors thank the staff for all their help and advice. JLW thanks CNPq and FAPERJ for financial support.

References

- Bomfim, J. A. S., Wardell, J. L., Low, J. N., Skakle, J. M. S. & Glidewell, C. (2005). Acta Cryst. C61, 053–056.
- Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.
- Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). *Acta Cryst.* E**61**, 01699–01701.
- Glidewell, C., Low, J. N. & Wardell, J. L. (2005). Acta Cryst. C61, 0551-0554.
- Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.
- McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.