Acta Crystallographica Section E

Structure Reports

Online

Sheets of π-stacked centrosymmetric molecules in N, N^{\prime}-bis(3-nitrobenzylidene)octane-1,8-diamine

ISSN 1600-5368

Christopher Glidewell, ${ }^{\text {a }}$ * John N. Low, ${ }^{\text {b }}$ Janet M. S. Skakle ${ }^{\text {b }}$ and James L. Wardell ${ }^{\text {C }}$
${ }^{\text {a }}$ School of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland, ${ }^{\text {b }}$ Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and ${ }^{\mathrm{c}}$ Instituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil

Correspondence e-mail: cg@st-andrews.ac.uk

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.058$
$w R$ factor $=0.158$
Data-to-parameter ratio $=17.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

In molecules of the title compound, $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{4}$, which lie across centres of inversion, the central octane fragment adopts a nearly planar all-trans conformation. There are no hydrogen bonds in the crystal structure but the molecules are linked into sheets by a single $\pi-\pi$ stacking interaction.

Comment

As part of our continuing studies of the supramolecular arrangements in imines, and especially in compounds of the type $\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{N}-(R)-\mathrm{N}=\mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}$, where $R=$ 1,2-cyclo- $\mathrm{C}_{6} \mathrm{H}_{10}$ (Glidewell, Low, Skakle \& Wardell, 2005; Glidewell, Low \& Wardell, 2005) or $R=\left(\mathrm{CH}_{2}\right)_{n}($ Bomfim et al., 2005), we now report the molecular and supramolecular structure of the title compound, (I).

(I)

The molecules of (I) lie across centres of inversion in the space group $P 2_{1} / c$, with the reference molecule selected as that lying across $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ (Fig. 1). The bond distances (Table 1) clearly show the presence of the double bond $\mathrm{C} 11=\mathrm{N} 11$, with typical skeletal bond angles at C11 and N11. The nitroaryl $-\mathrm{CH}=\mathrm{N}-\mathrm{C}$ fragment is almost planar, as is the eight-carbon fragment of the central spacer, as shown by the leading torsional angles (Table 1); however, the overall molecular conformation is very far from being planar, as shown by the torsion angles around the $\mathrm{N} 11-\mathrm{C} 11$ and $\mathrm{C} 12-\mathrm{C} 13$ bonds, where the non-H substituents are mutually anticlinal and synclinal respectively (Table 1 and Fig. 1).

The supramolecular aggregation is very simple; there are no hydrogen bonds of any kind, but a single aromatic $\pi-\pi$ stacking interaction links the molecules into sheets. The aryl

Received 28 September 2005 Accepted 29 September 2005 Online 5 October 2005

Figure 1
The molecule of compound (I), showing the atom-labelling scheme. The atoms marked 'a' are at the symmetry position $(1-x, 1-y, 1-z)$ and displacement ellipsoids are drawn at the 30% probability level.

Figure 2
Stereoview of part of the crystal structure of compound (I), showing the formation of a π-stacked (100) sheet. For the sake of clarity, the H atoms have been omitted.
ring at (x, y, z), which is part of the molecule centred across $\left(\frac{1}{2}\right.$, $\left.\frac{1}{2}, \frac{1}{2}\right)$, is almost parallel with the aryl rings at $\left(x, \frac{1}{2}-y, \frac{1}{2}+z\right)$ and ($x, \frac{1}{2}-y,-\frac{1}{2}+z$), which form parts of the molecules centred
across $\left(\frac{1}{2}, 0,1\right)$ and $\left(\frac{1}{2}, 0,0\right)$, respectively. The dihedral angle between adjacent rings is only $2.5(2)^{\circ}$, with the ring-centroid separations both 3.762 (2) \AA; the interplanar spacings are $c a$ $3.39 \AA$ and the ring-centroid offsets are ca $1.63 \AA$ A. Propagation of this single interaction by the space group symmetry then generates a (100) sheet in which each molecule is linked to four others (Fig. 2); there are, however, no direction-specific interactions between adjacent sheets.

Experimental

A solution of 3-nitrobenzaldehyde (0.4 mmol) and 1,8-diaminooctane $(0.2 \mathrm{mmol})$ in methanol $(20 \mathrm{ml})$ was heated under reflux for 1 h ; the mixture was cooled and the solvent was removed under reduced pressure. The solid residue was recrystallized from 1,2 -dichloroethane to yield crystals of compound (I) suitable for single-crystal X-ray diffraction (m.p. 359-361 K). IR (KBr): 3086, 2933-2832, 1646, 1610,1580, 1536, 1468, 1439, 1343, 1270, 1155, 1078, 1027, 971, 983 , $931,828,805,734,684,675,629,508 \mathrm{~cm}^{-1}$.

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{4}$

$$
\begin{aligned}
& D_{x}=1.301 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 2407 \\
& \quad \text { reflections } \\
& \theta=3.2-27.6^{\circ} \\
& \mu=0.09 \mathrm{~mm}^{-1} \\
& T=120(2) \mathrm{K} \\
& \text { Plate, yellow } \\
& 0.35 \times 0.24 \times 0.06 \mathrm{~mm}
\end{aligned}
$$

Monoclinic, $P 2_{1} / c$
$a=8.1297$ (5) A
$b=19.2452(15) \AA$
$c=7.4113$ (4) A
$\beta=115.321$ (4) ${ }^{\circ}$
$V=1048.15(12) \AA^{3}$
$Z=2$

Data collection

Bruker-Nonius KappaCCD
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.978, T_{\text {max }}=0.995$
11275 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$
$w R\left(F^{2}\right)=0.158$
$S=1.01$
2407 reflections
136 parameters
2407 independent reflections
1284 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.070$
$\theta_{\text {max }}=27.6^{\circ}$
$h=-10 \rightarrow 10$
$k=-24 \rightarrow 24$
$l=-9 \rightarrow 9$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0804 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.30 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.30 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\AA \mathrm{A}^{\circ}$).

C1-C11	$1.476(3)$	$\mathrm{N} 11-\mathrm{C} 12$	$1.455(2)$
$\mathrm{C} 11-\mathrm{N} 11$	$1.268(2)$		
			$117.28(17)$
$\mathrm{C} 1-\mathrm{C} 11-\mathrm{N} 11$	$122.55(18)$	$\mathrm{C} 11-\mathrm{N} 11-\mathrm{C} 12$	
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 11-\mathrm{N} 11$	$-178.68(19)$	$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$-175.69(16)$
$\mathrm{C} 1-\mathrm{C} 11-\mathrm{N} 11-\mathrm{C} 12$	$-179.34(18)$	$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 15^{\mathrm{i}}$	$176.9(2)$
$\mathrm{C} 11-\mathrm{N} 11-\mathrm{C} 12-\mathrm{C} 13$	$113.8(2)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 5-\mathrm{O} 51$	$-177.60(19)$
$\mathrm{N} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$-64.9(2)$		
Symmetry code: $(\mathrm{i})-x+1,-y+1,-z+1$.			

All H atoms were located in difference maps and then treated as riding atoms, with $\mathrm{C}-\mathrm{H}$ distances of 0.95 (aromatic) or $0.99 \AA$ (aliphatic), and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$.

Data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski \& Minor, 1997) and COLLECT; data reduction: $D E N Z O$ and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England. The authors thank the staff for all their help and advice. JLW thanks CNPq and FAPERJ for financial support.

References

Bomfim, J. A. S., Wardell, J. L., Low, J. N., Skakle, J. M. S. \& Glidewell, C. (2005). Acta Cryst. C61, o53-o56.

Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.
Glidewell, C., Low, J. N., Skakle, J. M. S. \& Wardell, J. L. (2005). Acta Cryst. E61, o1699-o1701.
Glidewell, C., Low, J. N. \& Wardell, J. L. (2005). Acta Cryst. C61, o551-o554. Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.
McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

